Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6101, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055539

RESUMO

Solar flares are one of the severest solar activities that have important effects on near-Earth space. Previous studies have shown that flight arrival delays increase as a result of solar flares, but the intrinsic mechanism behind this relationship is still unknown. In this study, we conducted a comprehensive analysis of flight departure delays during 57 solar X-ray events by using a huge amount of flight data (~ 5 × 106 records) gathered over a 5-year period. It is found that the average flight departure delay time during solar X-ray events increased by 20.68% (7.67 min) compared to quiet periods. Our analysis also revealed apparent time and latitude dependencies, with flight delays being more serious on the dayside than on the nightside and longer (shorter) delays tending to occur in lower (higher) latitude airports during solar X-ray events. Furthermore, our results suggest that the intensity of solar flares (soft X-ray flux) and the Solar Zenith Angle directly modulate flight departure delay time and delay rate. These results indicate that communication interferences caused by solar flares directly affect flight departure delays. This work expands our conventional understanding of the impacts of solar flares on human society and provides new insights for preventing or coping with flight delays.

2.
Sci Rep ; 13(1): 3246, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828884

RESUMO

Although the sun is really far away from us, some solar activities could still influence the performance and reliability of space-borne and ground-based technological systems on Earth. Those time-varying conditions in space caused by the sun are also called solar storm or space weather. It is known that aviation activities can be affected during solar storms, but the exact effects of space weather on aviation are still unclear. Especially how the flight delays, the top topic concerned by most people, will be affected by space weather has never been thoroughly researched. By analyzing huge amount of flight data (~ 4 × 106 records), for the first time, we quantitatively investigate the flight delays during space weather events. It is found that compared to the quiet periods, the average arrival delay time and 30-min delay rate during space weather events are significantly increased by 81.34% and 21.45% respectively. The evident negative correlation between the yearly flight regularity rate and the yearly mean total sunspot number during 22 years also confirms such correlation. Further studies show that the flight delay time and delay rate will monotonically increase with the geomagnetic field fluctuations and ionospheric disturbances. These results indicate that the interferences in communication and navigation during space weather events may be the most probable reason accounting for the increased flight delays. The above analyses expand the traditional field of space weather research and could also provide us with brand new views for improving the flight delay predications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...